
Test Case Generation for Concurrent System using
UML Combinational Diagram

Monalisha Khandai#1, Arup Abhinna Acharya#2, Durga Prasad Mohapatra*3
School of Computer Engineering, KIIT University

 Bhubaneswar, India
*Department of Computer Science & Engineering

 National Institute of Technology
Rourkela, India

Abstract— The unreasonable interference of concurrent threads
makes the testing activity for concurrent systems a difficult task.
Test case explosion is the major problem in concurrency testing
and make an interruption in systematic testing of concurrent
systems. In this paper we propose an approach of generating test
cases from combinational UML models. In our approach Activity
Diagram (AD) and Sequence Diagram (SD) are used to model a
system. The AD has converted into a graph called Activity Graph
(AG) and SD into a graph called Sequence Graph (SG). Finally
AG and SG are combined to form a graph called Activity
Sequence Graph (ASG). The ASG is traversed using a traversing
algorithm to generate the test cases. After comparing the test
cases generated from ASG with the test cases generated from AG
and SG, it is found that the test cases generated from ASG gives
a better coverage when compared with the test cases from single
modelling graph. The test cases are generated by controlling the
test case explosion and are useful for controlling synchronization
fault, loop fault, as well as scenario faults and interaction faults.

Keywords— Testing, Concurrency, Activity Sequence Graph
(ASG), synchronization fault, loop fault, scenario faults.

I. INTRODUCTION

According to IEEE testing is “the process of exercising or
evaluating a system or system components by manual or
automated means to verify that it satisfies specified
requirements”. In other words testing is the process of
identifying the difference between the expected and actual
results. If the software does not perform as required and
expected then a software failure is said to be occurred. Testing
effort consists of three things: i) test case generation or
selection ii) test execution iii) test evaluation. Among the
three, test cases generation problem is receiving highest
attention. A test case is normally a triplet [I, S, O], where “I”
is data input to the system “S” is the state of the system to
which the data will input, and “O” is the expected output from
the system. Testing is an important phase of software
development which aims at producing highly reliable system
and maintaining quality. The reliability and quality of the end
product depend to a large extend on testing. Therefore more

than 50% of software development effort is being spent on
testing. A test case is said to be having good code coverage if
it uncovers/detects maximum number of faults with minimum

number of test cases. Combination of all the test case with
which a given software product is to be tested is called test
suite.

Depending on the testing method employed, Software
testing can be implemented at any time in the development
process. However, most of the test effort occurs after the
requirements have been defined and the coding process has
been completed. But Code based testing have the following
disadvantages: i) certain aspects of behaviour of a system are
difficult to extract from code but are easily obtained from
design models, ii) test case generation process is delayed till
the coding is over. An alternative approach is to generate test
cases from the models representing the software, which has
the added advantage of applying testing techniques through
out the development process, on the basis of requirement,
specification and design models.

Recent approach that has been taken by researchers is to
use analysis design models like Unified Modelling Language
(UML) for test case generation. UML models are very popular
because when software engineering industry was in desperate
need for standardization and utilization of design
methodologies, UML came up as a solution. Other advantage
of UML models is that it provide different diagram for
representing different view of system models and it is easy to
automate. Automated test case generation is advantageous
when we have to generate the test cases for large system
which is inherently complex. In such a case generating all the
large number of test cases and carrying out the test cases is
very time consuming and labour intensive. The automated test
generating tool can be helpful in such a cases by saving the
time and cost. There are different tool such as QTP, Rational
Rose available for generating the test cases automatically. But
the recent approaches can generate the test cases
semiautomatically.

Though many work has been done for sequential testing a
few work has been done for concurrency testing. Testing
concurrent systems is a very crucial task since such a system

Monalisha Khandai et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1172-1181

1172

can exhibit different responses depending on the concurrency
conditions. Due to concurrency there may be test explosion.
Synchronization and deadlock create problems when
concurrently running objects want to interact with each other.
The UML Sequence Diagram, Activity Diagram and State
Chart Diagram can be used for testing concurrency. However
State Chart Diagram is useful for unit testing and results a
large number of test cases, due to consideration of each and
every state that an object undergoes during its operation,
where as the Sequence Diagram can be useful for integration
testing and results a less number of test cases. The Sequence
Diagram is also useful in detecting scenario as well as
interaction faults. The Activity Diagram is useful for
representing complex sequence of parallel and conditional
activities. The Activity Diagram is also useful in detecting
faults in loop and synchronization faults present in concurrent
systems, where the different concurrent processes need to be
synchronized properly.

In this paper we have proposed a method to generate test
cases from combinational UML models such as Sequence
Diagram and Activity Diagram. In this approach we have
converted the Activity Diagram (AD) into Activity Graph
(AG) and the Sequence Diagram (SD) into Sequence Graph
(SG) with the help of appropriate algorithms. Finally ASG is
being constructed by combining AG and SG, which is being
traversed to generate the test cases. The resultant shows that
the test case generated from the ASG is having better code
coverage with more number of faults detection capabilities.

The rest of the paper is organized as follows: Section II
represents the related works, section III represents basic
concepts, section IV proposed approach finally section V
represents the conclusion and future work.

II. RELATED WORK

Kundu et al. [1] proposed an approach of generating Test
Cases from Activity Diagram (AD). In their approach they
have transformed the AD into an intermediate format called
Activity Graph (AG). The AG is traversed to generate Test
cases. Sun [2] proposed an approach for generating test cases
from AD, in their approach converted the AD into an
intermediate format called Extended AND_OR Tree (ET) by
applying a transformation rule on the fork, join, merge, branch
activities. The ET is traversed to generate the test cases. Kim
et al. [3] in their approach convert the AD into an intermediate
format called I/O explicit Activity Diagram (IOAD), by
suppressing non-external input and output. IOAD is then
traversed to generate the test cases. Sarma et al. [4] proposed a
method for generating Test cases from UML Sequence
Diagram (SD). The technique converts the SD into an
intermediate format called Sequence Diagram Graph (SDG),
which is being traversed to generate the Test Cases. Since
Sequence Diagram only is not enough to generate the test
cases so OCL (Object Constraint Language) is used to store
the pre and post conditions of each node. Samuel et al. [5] in
their approach proposed a method to generate the Test
Sequences from Sequence Diagram available in UML 2.0.
The Sequence Diagram (SD) is converted into an intermediate

format Sequence Dependency Graph (SDG) by combining
the message sequences that are related to each other and
representing it as a node in SDG. The SDG is traversed to
generate the test cases.

 Sarma et al. [6] in their approach proposed a method for
generating test cases from combination of UML Sequence
diagram and Usecase Diagram (UD). The technique converts
the SD into SDG and the UD into UDG. Then the UDG and
the SDG are combined to form a graph called System Testing
Graph (STG). The STG is being traversed to generate the test
cases. OCL is used to store the pre and post condition of each
node. Sokenou [7] proposed an approach for generating Test
Cases from UML Sequence and Statechart Diagram. In their
approach the main information is extracted from Sequence
Diagram, and the Statechart Diagram is used as a
complementary for initializing sequences for the participating
objects. Riebisch et al. [8] proposed a method for generating
test cases from combination of Use case and Statechart
diagram. Swain et al. [9] proposed a method for generating
test cases from combination of Activity and Statechart
Diagram. Swain et al. [10] proposed a method for generating
test cases from combination of Activity and Sequence
Diagram. In their approach the have converted the Activity
Diagram and the Sequence Diagram into individual MFG
(Message Flow Graph). Then a traversing technique has been
used to generate the test cases from the MFGs.

III. BASIC CONCEPT

CONCURRENT SYSTEM: In case of Concurrent System
several threads runs concurrently. The execution of
concurrent threads begins from fork node (in case of Activity
Diagram) or from par fragment (in case of Sequence Diagram).
And the execution of concurrent threads /activity finishes on
join node (in case of Activity Diagram) or exit from par
fragment (in case of Sequence Diagram).
SEQUENCE DIAGRAM: The UML Sequence Diagram
consists of two basic elements i.e. the “objects” that
participate in the interaction and the “sequence of messages”
that are passed between the objects. Out of the thirteen
models used in UML, only sequence diagrams show the
messages exchanged between the objects.
ACTIVITY DIAHRAM: The UML Activity Diagram consists
of two basic elements i.e. “activity” and “transition”. An
activity can be represented as node is a state of doing
something, which can be further classified into different type
of activity such as Start Activity, End Activity, Branch
Activity, Merge Activity, Fork Activity, Join Activity, so on.
A transition can be represented as an edge connecting two
different activities which can be control flow, message flow or
object flow.
Activity Diagram can be used to describe the complex
sequence of activities, with support for both conditional as
well as parallel behaviour. Conditional behaviour can be
represented by branch and a merge, and parallel behaviour
can be represented by fork and join. A branch has a single

Monalisha Khandai et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1172-1181

1173

incoming transition and several guarded outgoing transitions.
Parallel processes during the fork and join can choose the
arbitrary order to execute [3].

Actually an UML Activity Diagram (AD) can be
represented as a tuple < A, T, C >, where A is the collection of
different types of activities in the AD; T: A x C → A, The C is
the constraint condition which is an optional. If any constraint
condition is there then that must be satisfied when the
transition (T) happens [2].
FAULT IN LOOP: This type of fault may occur in the loop
entry or terminating loop condition or increment operation or
decrement operation [1]. For example in an ATM system,
after inserting a card, the user enter the password and the
password is incorrect then for the First time TryAgain = Yes,
loop is executed for its 2nd iteration and say, at the end of 2nd
iteration, after giving TryAgain = No, loop is not exiting
rather it executes for its 3rd iteration.
SYNCHRONIZATION FAULT: This type of fault occurs
when an activity start its execution before the groups of
activities preceding activities have finishes their execution [1].
For an example in a library information system when ever the
user issues a book then the library database and the user
account must be updated simultaneously. Only after that the
system will check wether the user want to issue any book
further. Suppose in a case only the library database is updated
and the user account is not updated then when ever the user
will attempt to further issue any book then if the book is
available then the user can issue that book even though the
issue limit has crossed. This happens because the update
library database and the update the user account these two
parallel activities are not synchronized properly.
SCENARIO FAULT: This type of faults occur when a
sequence of messages don’t follow the desire path. A
sequence diagram depicts several operation scenarios. Each
scenario corresponds to a different sequence of message path
in the sequence diagram. For a given operation scenario,
sequence of message may not follow the desired path due to
incorrect condition evaluation, abnormal termination etc [4].
INTERACTION FAULTS: These types of faults generally
occur when messages are exchanged between objects. Several
faults come under this type of faults such as incorrect response
to a message, correct message passed to a wrong object etc [4].
ALL MESSAGE PATH COVERAGE CRITERIA: This
criterion is used for generating test sequences from Sequence
Diagram. Given a test set T and a Sequence Diagram D, then
T must cause each sequence of message path to be exercised
at least once [6].
ACTIVITY PATH COVERAGE CRITERION: This criterion
is used for generating test sequences from Activity Diagram.
The ACTIVITY PATH COVERAGE CRITERION maintains
the precedence relationship (an activity can’t begins its
execution before the preceding activity or groups of activities
finishes their execution) between the concurrent and non-
concurrent activities and considers the loop at most two (all
the activity will be consider exactly once except those
activities which are in loop, the activity in the loop will be at
most two times) [1]

IV. PROPOSED APPROACH

In this paper we have proposed a method of generating test
cases for Concurrent systems using combinational UML
models (i.e. Activity Diagram and Sequence Diagram). In our
approach we have converted the Activity Diagram (AD) and
the Sequence Diagram (SD) into intermediate formats called
Activity Graph (AG) and Sequence Graph (SG) respectively.
Finally we have combined the AG and the SG to form a
combined graph called Activity Sequence Graph (ASG).
While the ASG is traversed the resultant shows that the
generated test cases are being capable of detecting more faults
than test cases constructed from individual diagrams.

A) Generating Test Sequences from Sequence Diagram:

The Sequence Diagram, Activity Diagram, Statechart
Diagram are very useful for representing the concurrent
activities. The disadvantage of Statechart Diagram is that it
results in state explosion since all the state for every objects
through which the objects undergoes during the lifecycle are
considered. Where as the Activity Diagram (AD) represents
the sequence of activity flows and the Sequence Diagram (SD)
represent the sequence of messages passed between the
objects with out leading to test case explosion.

In our approach we have taken the SD available in UML
2.0. The UML Sequence Diagram, also known as interaction
diagram, represents the scenarios as possible sequence of
message exchange between the objects to specify the task.
The Sequence Diagram available in UML 2.0 enables
complex scenario to be specified in a single Sequence
Diagram. UML 2.0 combines multiple scenarios by means of
Combined Fragment (CF). A CF may contain another CF,
this features allows complex scenarios to be specified in a
single SD. A CF encloses one or more processing sequences
in a frame which are executed under specific fragment
operator [5].

There are 12 different type of fragment operator, but we will
be discussing only those operators which we have used in our
proposed works.
Combined Fragment (Par): Typically, the interaction
fragment par denotes the parallel merge among the messages
in the operands of a par fragment.
Combined Fragment Alt: The fragment alt, denote a choice
of behaviours, which to be controlled by an interaction
constraint.

Fig.1. represents a Sequence Diagram (SD) for a library
management system. Here after the card value is passed to the
session manager, the session manager checks the card weather
it is valid one or not. After that alternatively two activities are
carried out i) if the card is invalid one then eject message will
be displayed ii) it will check for the Password if the card is a
valid one. These two things being two alternate things are
represented in an ALT fragment. Similarly all the message
sequences are represented by suitable operational fragments.

Monalisha Khandai et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1172-1181

1174

We now convert the SD into an intermediate graph called
Sequence Graph (SG) using the Algorithm 1.

Algorithm 1: Generate Sequence Graph.
Input: Sequence Diagram (SD).
Output: Sequence Graph (SG).

1) Start.
2) For each MC
3) For MC! = ME // MC, ME are the current and end

message , //continue till current message is not the
 end message

4) MC = Mi // begin with the initial message Mi
5) For MC = Mi+1 // there is message sequence Mi, Mi+1
6) Create two nodes Mi, Mi+1 in the SG and assign a

edge between them i.e. Mi → Mi+1
7) End

In the algorithm 1 for constructing the SG from SD each
message that has passed in the Sequence Diagram are
considered. Here the message Id (Mc) of the SD is
transformed into the node in the SG and the edge represents
the connection between the messages. When ever a message is
passed between two objects in the SD then two nodes are
created in the SG, the nodes are named according to the
message ID of the SD. And an edge is assigned between them
to show the dependency among the messages. The SG of the
library management system is represented in Fig.2.

We maintain a table called Message Details of the

Sequence Diagram (MDSD) to store the Message ID along
with the message associated with the Message ID which can
be used further to generate test sequence from the message
sequence path. The MDSD of the library management system
is shown in TABLE I.

Fig. 1. Sequence Diagram of Library Management System

Monalisha Khandai et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1172-1181

1175

Fig. 2. Sequence Graph (SG) of Library Management System

TABLE.I.

MESSAGE DETAILS of SEQUENCE DIAGRAM

Message ID Message Name Message
ID

Message Name

M1 Card Value M14 Issue Book
M2 Invalid I_Card M15 BOOKid
M3 PW Value M16 Book not

available
M4 Invalid PW M17 Book available
M5 Account Value M18 Update Library

Database
M6 Account created M19 Update User

Account
M7 Close Account M20 Account not

created
M8 Destroy User

Account
M21 Get Name

M9 Suspend IC M22 Get F/M
M10 Continue M23 Get Dob
M11 Return Book M24 Get Address
M12 Update Library

Database
M25 Get Phno

M13 Update User
Account

M26 Get Affiliation

Test case generation:
For generating test sequences from the Sequence Graph All
Message Path Coverage Criteria (explained in section III) is
used.

We now propose a traversal algorithm called Generate
Message Sequence Path which will traverse SG and generate
the test case. The algorithm is a combination of Depth-First-
Search (DFS) and Breath-First-Search (BFS). The BFS is

used to traverse the concurrent nodes where as the DFS is
used to traverse the rest nodes of the SG.

ALGORITHM 2: Generate Message Sequence Path
Input: Sequence Graph (SG)
Output: Set of Message Sequence Paths (MSP)

1) Start.
2) Traverse the MG.
3) Repeat the step 4 -7 until (NC)! = (NE) // NC, NE

being the current node end node respectively.
4) If (NC)! = Fork node.
5) Traverse the CCG using DFS (Depth-First-Search).

a) Initialize all nodes to ready state.
b) Push the starting node into the stack and

changes its status to the waiting state.
c) Repeat step d and e until stack is empty.
d) Pop the top node n of stack. Process n and

change the status of n to the processed state.
e) Push on to the stack, all the neighbour of n

that are in ready state, and change their
status to the waiting state.

f) Exit.
6) If NC = Fork node.
7) Traverse the subtree using BFS (Breath-First-

Search).
a) Initialize all nodes to ready state.
b) Put the starting node in queue and change

its status to the waiting state.
c) Repeat step d and e until queue is empty.
d) Remove the front node n of queue. Process

n and change the status of n to the processed
state.

e) Add to the rear of the queue all the
neighbours of n that are in ready state, and
change their status to the waiting state.

f) Exit.
8) End.

After applying the Algorithm 2 on the SG, we obtain the
following Message Sequence Paths (MSP):

i) M1 – M2
ii) M1 – M3 – M4
iii) M1 – M3 – M5 – M6 – M7 – M8 – M9
iv) M1 – M3 – M5 – M6 – M10 – M11 – M12 – M13
v) M1 – M3 – M5 – M6 – M10 – M14 – M15 – M16
vi) M1 – M3 – M5 – M6 – M10 – M14 – M15 – M17 –

M18 – M19
vii) M1 – M3 – M5 – M20 – M21 – M22 – M23 – M24 –

M25 – M26

Now after getting the MSP the message name are obtained
from the TABLE.I and applying it on the above message
sequence path we obtain the following test sequences:

i) Card value – Invalid card
ii) Card value – Password value – Invalid password

Monalisha Khandai et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1172-1181

1176

iii) Card value – Password value – Account value –
Account created – Close account – Destroy user
account – Suspend IC

iv) Card value – Password value – Account value –
Account created – Continue – Return book – Update
library database – Update user account

v) Card value – Password value – Account value –
Account created – Continue – Issue Book – Book Id
– Book not available

vi) Card value – Password value – Account value –
Account created – Continue – Issue Book – Book Id
– Book available – Update library database –
Update user account

vii) Card value – Password value – Account value –
Account not created – Get Name – Get F/M – Get
DOB – Get Address – Get PhNo – Get Affiliation

Though SD can be used to represents sequence of message
that is passed between the objects and is useful for detecting
scenario faults. The disadvantage is that a connector can not
be used, suppose after filling of the form if the user wants to
issue book then we are unable to connect the form filling
thread to the book issue thread, where as this can be
represented in Activity Diagram.

B) Generating Test Sequences from Activity Diagram

Activity Diagram shows set of activities which are to be
executed to accomplish the task. As explained in section IV
(A) if a user wants to issue a book after filling up the form
then Sequence Diagram is able to connect the book issue
thread with the form filling thread. But this is possible in case
of Activity Diagram.

Fig. 3. Activity Diagram for Library Management System

Fig.3. shows an Activity Diagram (AD) for a library
management system. In our next step the AD is converted into
an intermediate format called Activity Graph (AG). AG being
an intermediate format makes the test case generation process
easier. We now propose a mapping algorithm which will
convert the Activity Diagram (AD) into an Activity Graph
(AG)

Algorithm 3: Mapping Algorithm.
Input: Activity Diagram (AD).
Output: Activity Graph (AG).

1) Start.
2) For each node participating in the AD do step 3 to11.
3) If the node is a initial node then map it into a node

of type ’S’(start node) in the AG with pre-edge of
’S’=∅.

4) If the node is a end node then map it into node of
type ’E’(end node) in the AG with post-edge of
’E’=∅.

5) If the node is a decision node then map it into node
of type ’D’ in the AG where the children are the
resultant of the decision node.

6) If the node is the guard condition associated with the
decision node then map in into node of type ’C’ in
the AG which is associated with the condition string
and its parent node is of type ’D’

7) If the node is merge node then map it into node of
’M’ in the AG which is having single outgoing edge
and more than one incoming edge

8) If the is a fork node then map it into node of type ’F’
in the AG with single incoming edge and more than
one outgoing edge.

9) If the node is a activity associated with fork node
then map it into node of type ’A’ in the AG and its
parent node is of type ’F’

10) If the node is a join node then map it into node of
type ’J’ in the AG with having one outgoing.

11) If the node is a normal activity node then map it into
node of type ’A’ in AG which is associated with the
name of the activity associated with that node.

12) End
Where S is start activity, A is normal activity, E is end

activity, D is decision node, C is the condition node, M is
merge node, F is the fork node and J is join node,
After applying the mapping algorithm on the Activity
Diagram the AG of the library management system is shown
in Fig. 4.
Test case generation:
For generating test sequences from the Activity Graph
Activity Path Coverage Criterion (as explained in section III)
is used.

The AG is being traversed using the Algorithm 2. While
traversing the nodes when ever there is a fork node we will go
for a Breath First Search (BFS) otherwise the rest node are
traversed using Depth First Search (DFS). However it is
impossible to predict the type of nodes in the intermediate

Monalisha Khandai et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1172-1181

1177

format, because from the AG we can find that both fork and
decision node are having multiple outgoing edges and both
the merge and join node is having multiple incoming edges.
So here we maintain a table called Node Details of Activity
Diagram (NDAD) which will store the node number along
with the activity associated and the type of activities. When
ever we encounter a node with multiple outgoing edges we
check the table to find out weather it is a decision node or
fork node. The NDAD of the activity diagram is shown in
TABLE.II.

Fig. 4. Activity Graph of Library Management System

TABLE II.
NODE DETAILS of ACTIVITY DIAGRAM (NDAD)

Node
Id

Activity
associated

Type Node Activity
associated

Type

1 Start S 26 Increase
book
availability

A

2 Insert IC A 27 Decrease
no of book
issued

A

3 Verify IC D 28 J
4 Invalid IC C 29 Issue A
5 Eject card A 30 Check

availability
D

6 Valid card C 31 Not
available

C

7 Enter password A 32 Available C
8 Verify

password
D 33 F

9 Invalid
password

C 34 Decrease
book
availability

A

10 Try again D 35 Increase
no of book
issued

A

11 Yes C 36 J
12 No C 37 Account

not created
C

13 Valid password C 38 F
14 Check acc.

Created/ not
D 39 Update

Name
A

15 Account
created

D 40 Update
F/M

A

16 Check close/
continue

C 41 Update
DOB

A

17 Close D 42 Update
Address

A

18 F 43 Update
Phno.

A

19 Account
destroyed

A 44 Update
Affiliation

A

20 IC suspended A 45 J
21 J 46 Check

issue/exit
D

22 Continue C 47 Issue C
23 Issue/ Return D 48 Exit C
24 Return C 49 End E
25 F

After traversing the AG we obtain following of Activity Path.

i) 1 → 2 → 3 → 4 → 5 → 49
ii) 1 → 2 → 3 → 6 → 7 → 8 → 9 → 10 →12 → 5 →

49
iii) 1 → 2 → 3 → 6 → 7 → 8 → 9 → 10 → 11 →7 → 8

→ 9 → 10 →12 → 5 → 49
iv) 1 → 2 → 3 → 6 → 7 → 8 → 13 → 14 → 15 → 16

→ 17 → 18 → 19 →20 → 21 → 5 → 49
v) 1 → 2 → 3 → 6 → 7 → 8 → 13 → 14 → 15 → 16

→ 22 → 23 → 24 →25 → 26 → 27 → 28 → 5 →
49

vi) 1 → 2 → 3 → 6 → 7 → 8 → 13 → 14 → 15 → 16
→ 22 → 23 → 29 →30 → 31→ 5 → 49

vii) 1 → 2 → 3 → 6 → 7 → 8 → 13 → 14 → 15 → 16
→ 22 → 23 → 29 →30 → 32→ 33 → 34 → 35 →
36 → 5 → 49

viii) 1 → 2 → 3 → 6 → 7 → 8 → 13 → 14 → 37 → 38
→ 39 → 40 → 41 → 42 → 43 → 44 → 45 → 46 →
48 → 5 → 49

ix) 1 → 2 → 3 → 6 → 7 → 8 → 13 → 14 → 37 → 38
→ 39 → 40 → 41 → 42 → 43 → 44 → 45 → 46 →
47 → 29 →30 → 31→ 5 → 49

x) 1 → 2 → 3 → 6 → 7 → 8 → 13 → 14 → 37 → 38
→ 39 → 40 → 41 → 42 → 43 → 44 → 45 → 46 →
47 → 29 →30 → 32→ 33 → 34 → 35 → 36 →5 →
49

xi) 1 → 2 → 3 → 6 → 7 → 8 → 9 → 10 → 11 →7 → 8
→13 → 14 → 15 → 16 → 17 → 18 → 19 →20 →
21 → 5 → 49

xii) 1 → 2 → 3 → 6 → 7 → 8 → 9 → 10 → 11 →7 → 8
→ 13 → 14 → 15 → 16 → 22 → 23 → 24 →25 →
26 → 27 → 28 → 5 → 49

xiii) 1 → 2 → 3 → 6 → 7 → 8 → 9 → 10 → 11 →7 → 8
→ 13 → 14 → 15 → 16 → 22 → 23 → 29 →30 →
31→ 5 → 49

Monalisha Khandai et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1172-1181

1178

xiv) 1 → 2 → 3 → 6 → 7 → 8 → 9 → 10 → 11 →7 → 8
→ 13 → 14 → 15 → 16 → 22 → 23 → 29 →30 →
32→ 33 → 34 → 35 → 36 →5 → 49

xv) 1 → 2 → 3 → 6 → 7 → 8 → 9 → 10 → 11 →7 → 8
→ 13 → 14 → 37 → 38 → 39 → 40 → 41 → 42 →
43 → 44 → 45 → 46 → 48 → 5→ 49

xvi) 1 → 2 → 3 → 6 → 7 → 8 → 9 → 10 → 11 →7 → 8
→ 13 → 14 → 37 → 38 → 39 → 40 → 41 → 42 →
43 → 44 → 45 → 46 → 47 → 29 →30 → 31→ 5 →
49

xvii) 1 → 2 → 3 → 6 → 7 → 8 → 9 → 10 → 11 →7 → 8
→ 13 → 14 → 37 → 38 → 39 → 40 → 41 → 42 →
43 → 44 → 45 → 46 → 47 → 29 →30 → 32→ 33 →
34 → 35 → 36 →5 → 49

After getting the activity path we extract out the activities
names from TABLE.II. and obtain the following test
sequences. Due to space complexity here we have represented
the first two and last one test sequences. The rest of the test
sequences can be obtained in the same manner.

i) Start → Insert IC → Verify IC → Invalid IC →
Eject card → End.

ii) Start → Insert IC → Verify IC → Valid IC → Enter
password → Verify password → Invalid password
→ Try again → No → Eject card → End.

xviii) Start → Insert IC → Verify IC → Valid IC →
 Enter password → Verify password → Invalid
 password → Try again → Yes → Enter password
 → Verify password → Valid password → Check
 acc. Created/ not → Account not created → Update
 Name → Update F/M → Update DOB → Update
 Address → Update Phno.→ Update Affiliation →
 Check issue/exit → Issue → Check availability →
 Available → Decrease book availability → Increase
 no of book issued → Eject card → End.

As explained in IV (B), an Activity Diagram represents the
information in an abstract way. It is useful for representing
only sequence of activities but not how the communications
happens between objects. Since combinational UML models
are being capable of detecting more faults than compared to
single UML models [7, 8, 9, 10]. So we propose an approach
which combines the AG with the SG and will generate a
graph called ASG. The test sequences will be generated from
ASG, having the combined features of both the diagrams.

C) Generating Test Sequences from Activity Sequence Graph

In this section we propose an algorithm called Generate
ActivitySequence Graph, which will combine the Activity
Diagram (AD) and the Sequence Diagram (SD) to form a
combinational diagram called Activity Sequence Graph
(ASG). The algorithm for generating the ASG is explained in
Algorithm 4

ALGORITHM 4: Generate Activity Sequence Graph (ASG)
INPUT: Activity Graph (AG) and Sequence Graph (SG)
OUTPUT: Activity Sequence Graph (ASG)

1) Start.
2) Traverse the AG
3) For (NC)! = (NE) // NC, NE being the current node end

node respectively.
4) NC = Nx // start with the node Nx
5) For Nc = Ny Do the following // move to the next

node
6) While Nx → Ny // there is a transition from Nx to Ny
7) Create two nodes Nx and Ny in the ASG, assign a

Edge between them
8) Traverse SG to find out the message (M suppose)

responsible for Nx → Ny
// Traverse SG to find out the message responsible
for the transition between Nx and Ny

9) Assign the message M to the edge connecting the
node.// i.e . Nx - M→ Ny

10) End.
In algorithm 4 we propose a technique for generating ASG by
combining AG and SG. In this approach we first traverse the
AG to find the transition from one node to another. When
ever a transition is there we then take the two nodes in ASG
and assign an edge between them. We then traverse the SG to
find out the corresponding message which is responsible for
the transition, when the message is found we then assign the
message to the edge connecting the two nodes. Applying this
technique the ASG is generated for the library management
system which is shown in Fig.5.

Fig. 5. Activity Sequence graph of Library Management system

Monalisha Khandai et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1172-1181

1179

Test case generation:
For generating test sequences from the Activity Sequence
Graph Activity Path Coverage Criterion (explained in section
III) is used.

The ASG is being traversed using Algorithm 2 to ASG to
generate the activity path. However when a transition happens
from one node to another node the message assigned to the
edge will be considered in the Activity Sequence Path
generation process

After applying the algorithm we obtain the following Activity
Sequence Path:

i) 1 → 2 → M1 → 3 → 4 → M2 →5 → 49
ii) 1 → 2 → M1 → 3 → 6 → 7 → M3 → 8 → 9 → 10

→12 → M4 → 5 → 49
iii) 1 → 2 → M1 → 3 → 6 → 7 → M3 → 8 → 9 → 10

→11 →7 → 8 → 9 → 10 →12 → M4 → 5 → 49
iv) 1 → 2 → M1 → 3 → 6 → 7 → M3 → 8 → 13 →

M5 → 14 → M6 →15 → 16 → M7 → 17 → 18 →
M8 →19 →M9 →20 → 21 → 5 → 49

v) 1 → 2 → M1 → 3 → 6 → 7 → M3 → 8 → 13 →
M5 → 14 → M6 →15 → 16 →M10 → 22 → 23 →
M11 → 24 →25 → M12 → 26 → M13 →27 → 28
→ 5 → 49

vi) 1 → 2 → M1 → 3 → 6 → 7 → M3 → 8 → 13 →
M5 → 14 → M6 →15 → 16 →M10 → 22 → 23 →
M14 → 29 → M15 →30 →M16 → 31→ 5 → 49

vii) 1 → 2 → M1 → 3 → 6 → 7 → M3 → 8 → 13 →
M5 → 14 → M6 →15 → 16 →M10 → 22 → 23 →
M14 → 29 → M15 →30 → M17 → 32→ 33 →M18
→ 34 → M19 → 35 → 36 → 5 → 49

viii) 1 → 2 → M1 → 3 → 6 → 7 → M3 → 8 → 13 →
M5 → 14 → M20 → 37 → 38 → M21 → 39 →
M22 → 40 → M23 → 41 → M24 → 42 → M25 →
43 → M26 → 44 → 45 → 46 → 48 → 5 → 49

ix) 1 → 2 → M1 → 3 → 6 → 7 → M3 → 8 → 13 →
M5 → 14 → M20 → 37 → 38 → M21 → 39 →
M22 → 40 → M23 → 41 → M24 → 42 → M25 →
43 → M26 → 44 → 45 → 46 → 47 → 29 → M15
→30 →M16 → 31→ 5 → 49

x) 1 → 2 → M1 → 3 → 6 → 7 → M3 → 8 → 13 →
M5 → 14 → M20 → 37 → 38 → M21 → 39 →
M22 → 40 → M23 → 41 → M24 → 42 → M25 →
43 → M26 → 44 → 45 → 46 → 47 → 29 → M15
→30 → M17 → 32→ 33 →M18 → 34 → M19 →
35 → 36 → 5 → 49

xi) 1 → 2 → M1 → 3 → 6 → 7 → M3 → 8 → 9 → 10
→11 →7 → 8 →13 → M5 → 14 → M6 →15 → 16
→ M7 → 17 → 18 → M8 →19 →M9 →20 → 21
→ 5 → 49

xii) 1 → 2 → M1 → 3 → 6 → 7 → M3 → 8 → 9 → 10
→11 →7 → 8 →13 → M5 → 14 → M6 →15 → 16
→M10 → 22 → 23 → M11 → 24 →25 → M12 →
26 → M13 →27 → 28 → 5 → 49

xiii) 1 → 2 → M1 → 3 → 6 → 7 → M3 → 8 → 9 → 10
→11 →7 → 8 →13 → M5 → 14 → M6 →15 → 16

→M10 → 22 → 23 → M14 → 29 → M15 →30
→M16 → 31→ 5 → 49

xiv) 1 → 2 → M1 → 3 → 6 → 7 → M3 → 8 → 9 → 10
→11 →7 → 8 →13 → M5 → 14 → M6 →15 → 16
→M10 → 22 → 23 → M14 → 29 → M15 →30 →
M17 → 32→ 33 →M18 → 34 → M19 → 35 → 36
→ 5 → 49

xv) 1 → 2 → 3 → 6 → 7 → 8 → 9 → 10 → 11 →7 → 8
→ 13 → 14 → 37 → 38 → 39 → 40 → 41 → 42 →
43 → 44 → 45 → 46 → 48 → 5→ 49

xvi) 1 → 2 → M1 → 3 → 6 → 7 → M3 → 8 → 9 → 10
→11 →7 → 8 →13 → M5 → 14 → M20 → 37 →
38 → M21 → 39 → M22 → 40 → M23 → 41 →
M24 → 42 → M25 → 43 → M26 → 44 → 45 → 46
→ 48 → 5 → 49

xvii) 1 → 2 → M1 → 3 → 6 → 7 → M3 → 8 → 9 → 10
→11 →7 → 8 →13 → M5 → 14 → M20 → 37 → 38
→ M21 → 39 → M22 → 40 → M23 → 41 → M24 →
42 → M25 → 43 → M26 → 44 → 45 → 46 → 47 →
29 → M15 →30 → M17 → 32→ 33 →M18 → 34 →
M19 → 35 → 36 → 5 → 49

After obtaining the Activity Message Sequence extract
message name from TABLE.I and TABLE.II to obtain Test
sequences. Due to space complexity here we have represented
the first two and last one test sequences. The rest of the test
sequences can be obtained in the same manner.

i) Start → Insert IC → [Card Value] → Verify IC
=Invalid IC → [Display Invalid I_Card] → Eject
card → End

ii) Start → Insert IC → [Card Value] → Verify IC
=Valid IC → Enter password → [PW Value] →
Verify password = Invalid password → Try again =
No → [Display Invalid PW] → Eject card → End

xviii) Start → Insert IC → [Card Value] → Verify IC
 =Valid IC → Enter password → [PW Value] →
 Verify password = Invalid password → Try again
 =Yes Enter password → PW Value → Verify
 password = Valid password → [Account Value] →
 Check acc. Created/ not = [Account not created] →
 [Get Name] → Update Name → [Get F/M] →
 Update F/M → [Get DOB] → Update DOB → [Get
 Address]→ Update Address → [Get Phno] →
 Update Phno. → [Get affiliation] → Update
 Affiliation → Check Issue/exit = \Issue →
 [BOOKid] → Check availability = [Available] →
 [Update Library Database] → Decrease book
 availability → [Update User Account] → Increase
 no of book issued → Eject card → End

V. CONCLUSION AND FUTURE WORK

In this paper we have proposed a method for generating

test cases from UML combinational diagram i.e. Activity
Diagram (AD) and Sequence Diagram (SD). We have

Monalisha Khandai et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1172-1181

1180

converted the AD and the SD into intermediate formats called
Activity Graph (AG), Sequence Graph (SG) respectfully.
Finally we have combined the AG and the SG to form a
combined graph called Activity Sequence Graph (ASG) and
traversed the ASG to generate the test cases. The resultant test
cases show that the test cases generated from the ASG is
having more fault detection capabilities than the single
modelling graphs.

Consider the last test sequence obtained from the
Sequence Diagram. Here we can only find information about
the message passed between the objects, but can’t get any
information about how the activity flow occurs. So this test
sequence will be capable of detecting faults associated with
message sequencing, and will not able to detect fault
associated with decision node or loop faults. For example
when ever we insert a card then suppose the last test sequence
is obtained, then it is a valid test sequence for valid card and
password. So we are unable to detect the faults associated
with decision. Now consider the last test sequence obtained
from Activity Diagram. Here we can find out the faults
associated with decision as well as faults. For example when
ever the card is verified then out put of the decision node
invalid IC or valid IC is represented in the decision thread.
But we are not able to find out the messages passed between
the objects. On the other hand consider that the last test
sequence of the Activity Sequence Graph, here the activities
as well as message sequence is considered. So we will be able
to detect more number of faults.

In future we are planning to apply Genetic Algorithm on
the combined modelling graph ASG, so that we will obtain
the optimal prioritized test suites which will be capable of
detecting more faults in less effort and time.

References

[1] D. Kundu, D. Samanta “A novel approach to Generate Test Cases from

UML Activity Diagram”, Journal of object technology, Vol 8. No. 3,
May-June 2009, pp.65 – 83.

[2] C. a. Sun “A Transformation-based Approach to Generating Scenario-
oriented Test Cases from UML Activity Diagram for Concurrent
Application” Annual IEE International Computer Software and
Applications Conference, IEEE 2008, pp 160 – 167.

[3] H. Kim, S. Kang, J. Baik, I. Ko “Test Case Generation from UML
Activity Diagram” Eighth ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking, and
Parallel/Distributed Computing IEEE 2007, pp 556 – 561.

[4] M. Sarma, D. Kundu, R. Mall “Automatic Test Cases Generation from
UML Sequence Diagram” 15th International Conference on Advanced
Computing and Communications, IEEE, 2007, pp 60 – 65.

[5] P. Samuel, A. T. Joseph “Test Sequence Generation from UML
Sequence Diagram”, ninth ACIS International Conference on
Software Engineering, Artificial Intelligence, Networking, and
Parallel/Distributed Computing IEEE 2008, pp.879 – 887.

[6] M. Sarma, R. Mall “Automatic Test Cases Generation from UML
Models”, 10th International Conference on Information Technology,
IEEE, 2007, pp.196 – 201.

[7] D. Sokenou, “Generating Test Sequences from UML Sequence
diagram and State Diagrams” pp 236 – 240.

[8] M. Riebisch, I. Philippow, M. Götze “UML-Based Statistical Test
Case Generation”

[9] S. K. Swain, D. P. Mohapatra, Rajib Mall “Test Case Generation
Based on State and Activity Models”, Journal of Object Technology,
pp. 1 – 27.

[10] S. K. Swain, D. P. Mohapatra, “Test Case Generation from Behavioral
UML Models”, International Journal of Computer Applications,
Volume 6– No.8, September 2010, pp. 5 – 11.

Monalisha Khandai et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1172-1181

1181

